fclabels
Version 0.9.0 revision 0 uploaded by SebastiaanVisser.
Package meta
- Synopsis
- First class accessor labels implemented as lenses.
- Description
First class labels that act as bidirectional record fields.
The labels are implemented as lenses and are fully composable and can be used to get, set and modify parts of a datatype in a consistent way. The lens datatype, conveniently called :->, is an instance of the Category type class: meaning it has a proper identity and composition. The library has support for automatically deriving labels from record selectors that start with an underscore. Labels can be used in a purely functional setting or be applied to mutable state in some state monad.
To illustrate this package, let's take the following two example datatypes (somehow Haddock removes the curly braces):
data Person = Person { _name :: String , _age :: Int , _isMale :: Bool , _place :: Place }
data Place = Place { _city , _country , _continent :: String }
Both are record datatypes with all record labels prefixed by an underscore. This underscore is an indication for our Template Haskell code to derive lenses for these fields. Deriving lenses can be done with this simple one-liner:
$(mkLenses [''Person, ''Place])
Lens functions will be generated, lens type signatures will not be generated. This is actually not that bad, by writing the signatures Let's give the functions a signature by hand:
name :: Person :-> String age :: Person :-> Int isMale :: Person :-> Bool place :: Person :-> Place city :: Place :-> String country :: Place :-> String continent :: Place :-> String
These type signatures look very similar to the function types for normal record labels, except that the additional colon indicates a true first class lens. These lenses can be used to get, set and modify the value and are fully composable.
Now let's look at this example. This 71 year old fellow, called Jan, is my neighbour and didn't mind using him as an example:
jan :: Person jan = Person "Jan" 71 True (Place "Utrecht" "The Netherlands" "Europe")
When we want to be sure Jan is really as old as he claims we can use the
get
function to get the age out as an integer:hisAge :: Int hisAge = get age jan
Consider he now wants to move to Amsterdam: what better place to spend your old days. Using composition we can change the city value deep inside the structure:
moveToAmsterdam :: Person -> Person moveToAmsterdam = set (city . place) "Amsterdam"
moveToAmsterdam jan == Person "Jan" 71 True (Place "Amsterdam" "The Netherlands" "Europe")
Composition is done using the dot operator which is part of the
Control.Category
module. Make sure to import this module and hide the default(.)
,id
andmod
function from the Prelude.Now, because Jan is an old guy, moving to another city is not a very easy task, this really takes a while. It will probably take no less than two years before he will actually be settled. To reflect this change it might be useful to have a first class view on the
Person
data type that only reveals the age and city. This can be done by using a neatApplicative
functor instance:ageAndCity :: Person :-> (Int, String) ageAndCity = Label $ (,) <$> fst `for` age <*> snd `for` (city . place)
Because the applicative type class on its own is not very capable of expressing bidirectional relations, which we need for our lenses, the actual instance is defined for an internal helper structure called
Point
. Points are a bit more general than lenses. As you can see above, theLabel
constructor has to be used to convert aPoint
back into aLabel
. Thefor
function must be used to indicate which partial destructor to use for which lens in the applicative composition.Now that we have an appropriate age+city view on the
Person
data type (which is itself a lens again), we can use themod
function to make Jan move to Amsterdam over exactly two years:moveToAmsterdamOverTwoYears :: Person -> Person moveToAmsterdamOverTwoYears = mod ageAndCity (\(a, b) -> (a+2, "Amsterdam"))
moveToAmsterdamOverTwoYears jan == Person "Jan" 73 True (Place "Amsterdam" "The Netherlands" "Europe")
This package also contains a lens data type that encodes bidirectional functions. Just like lenses, lenses can be composed with other lenses using the
Control.Category
type class. Lenses can be used to change the type of a lens. TheIso
type class, which can be seen as a bidirectional functor, can be used to apply lenses to lenses. For example, when we want to treat the age of a person as a string we can do the following:ageAsString :: Person :-> String ageAsString :: (show <-> read) `iso` age
A final note: this library might look cryptic at first sight, but give it a try, it is not that hard.
CHANGELOG 0.4.2 -> 1.0.0 - Added askM and localM for running lenses inside MonadReader. - Minor documentaion update. - Exported Point internals. - Renamed Lens to Bijection, which is more correct. - Renamed Label to Lens.
- Author
- Sebastiaan Visser, Erik Hesselink, Chris Eidhof, Sjoerd Visscher.
- Bug reports
- n/a
- Category
- Data
- Copyright
- n/a
- Homepage
- n/a
- Maintainer
- Sebastiaan Visser <haskell@fvisser.nl>
- Package URL
- n/a
- Stability
- n/a