type-level-sets
Version 0.7 revision 1 uploaded by GeorgeWilson.
Package meta
- Synopsis
- Type-level sets and finite maps (with value-level counterparts)
- Description
This package provides type-level sets (no duplicates, sorted to provide a normal form) via Set and type-level finite maps via Map, with value-level counterparts.
Described in the paper "Embedding effect systems in Haskell" by Dominic Orchard and Tomas Petricek http://www.cl.cam.ac.uk/~dao29/publ/haskell14-effects.pdf (Haskell Symposium, 2014). This version now uses Quicksort to normalise the representation.
Here is a brief example for finite maps:
import Data.Type.Map -- Specify how to combine duplicate key-value pairs for Int values type instance Combine Int Int = Int instance Combinable Int Int where combine x y = x + y foo :: Map '["x" :-> Int, "z" :-> Bool, "w" :-> Int] foo = Ext (Var :: (Var "x")) 2 $ Ext (Var :: (Var "z")) True $ Ext (Var :: (Var "w")) 5 $ Empty bar :: Map '["y" :-> Int, "w" :-> Int] bar = Ext (Var :: (Var "y")) 3 $ Ext (Var :: (Var "w")) 1 $ Empty -- foobar :: Map '["w" :-> Int, "x" :-> Int, "y" :-> Int, "z" :-> Bool] foobar = foo `union` bar
The Map type for foobar here shows the normalised form (sorted with no duplicates). The type signatures is commented out as it can be infered. Running the example we get:
>>> foobar {w :-> 6, x :-> 2, y :-> 3, z :-> True}
Thus, we see that the values for "w" are added together. For sets, here is an example:
import GHC.TypeLits import Data.Type.Set type instance Cmp (Natural n) (Natural m) = CmpNat n m data Natural (a :: Nat) where Z :: Natural 0 S :: Natural n -> Natural (n + 1) -- foo :: Set '[Natural 0, Natural 1, Natural 3] foo = asSet $ Ext (S Z) (Ext (S (S (S Z))) (Ext Z Empty)) -- bar :: Set '[Natural 1, Natural 2] bar = asSet $ Ext (S (S Z)) (Ext (S Z) (Ext (S Z) Empty)) -- foobar :: Set '[Natural 0, Natural 1, Natural 2, Natural 3] foobar = foo `union` bar
Note the types here are all inferred.
- Author
- Dominic Orchard
- Bug reports
- n/a
- Category
- Type System, Data Structures
- Copyright
- 2013-16 University of Cambridge
- Homepage
- n/a
- Maintainer
- Dominic Orchard
- Package URL
- n/a
- Stability
- experimental